

NATIONAL INSTITUTE OF AEROSPACE

High Fidelity Topographical Modification of Materials for Lunar Dust Adhesion Mitigation

NASA Lunar Science Institute Forum 2009

Christopher J. Wohl¹, Marcus A. Belcher¹, Yi Lin¹, John W. Connell² National institute of Aerospace, Hampton, VA 23666-6147 NASA Langley Research Center, Hampton, VA 23681-2199

The Lunar Dust Problem ... Briefly

The lunar dust is problematic due to its:

- High porosity
- Broad size distribution
- Health risks
- Instrument and equipment compromising capability
- Potentially dynamic state

The lunar dust is **Strongly Adhesive** due to:

- Mechanical interlocking
- Electrostatic charging
- Magnetic properties
- Chemical reactivity

Bell, T., "True-Grit"-Unearthly Dust. *The Bent of Tau Beta Pi* 2006, pp 14 – 16.

Surface Energy vs. Adhesion: Working Hypothesis

Intrinsic Lunar Dust Adhesive Interactions

Langmuir **2005**, 21, 8978.

Lunar Dust Simulant Mitigation Strategies

Objective:

- Develop a more fundamental understanding of the effects of surface energy and topography on lunar dust simulant adhesion
- Research surface energy modification methods which are applicable to a diverse array of existing and experimental materials

Approach:

- Utilize topographical modification techniques and low surface energy materials to introduce lotus-effect surface properties
- Adhere lunar dust simulant particles to AFM cantilevers and measure the work of adhesion on various surface treatments
- Evaluate the efficacy of surface treatments for adhesion mitigation
 through active particle detachment experiments

Comparison of Topography Fidelity

Appl. Surf. Sci. **2009**, 255(18), 8135-8144.

Low Fidelity

Photolithography

Laser Ablation Patterning

High Fidelity

Surface Engineering Question: What Dimensions Should be Used?

Mask #	Photomask dimensions (mm)		Photomask area (mm²)		Solid-liquid interface
	Х	Y	area	"Pillar" area	fraction
1	20	25	2025	400	0.20
2	20	40	3600	400	0.11
3	20	10	900	400	0.44
4	10	10	400	100	0.25

Flat Ni-coated Kapton

Ni-coated Kapton w/ Photopattern #1

Photolithography Series I: Ni-coated Kapton®

Exposure to CF₄ plasma deposits a Teflon®-like layer while increasing

the pillar depth

BEFORE

Feature size~ 20 μm

Feature size ~ 0.4 μm

Laser Ablation Pattern Visualization: Optical and Confocal Microscopy

Optical Microscope Images (Scale Bar: 100 μm)

Polyimide Siloxane

Aluminum 3003H14

Confocal Microscope Images 15 μm 25 μm 25 μm

Feature sizes

Laser Ablation of Commercial Materials

 Laser ablation patterning lowers the surface energy of materials as shown by increasing water contact angles.

yimide Siloxane After

176°

Laser Ablation Patterning of Commercially Available Materials

Acrylonitrile

Polyimide Siloxane Before

Advancing Water Contact Angle

Qualitative Dust Adhesion Testing: Crude Tapping Test

 Lunar dust simulant (≤ 25 μm) was deposited on the surface. The samples were then tilted 90° and tapped once on a hard surface. (50 times magnification)

Before

Patterned Aluminum 3003H14

After

Dust Adhesion Testing: AFM Adhesion Force Measurement

AFM Adhesion Test

Sonic Wand Test

- Largest individual grains ≈ 3 μm
- Spherical particle volume = $4/3\pi r^3 = 14.2 \mu m^3$
- Particle Mass (SG of 2.9 g/cm³) = 41 pg
- Surface acceleration was 4.08*10⁵ m/s²
- Minimal adhesion force for the remaining particles of 16.7 nN.
- The adhesion of:
 - Seasoning to a tortilla chip = 1.6 330 nN
 - Silicon nitride AFM tip to tantalum oxynitride = 3 nN
 - ITO-coated AFM tip to CF³-functionalized Si wafer = 25 nN

Image Magnified 200 times

Conclusions

- No single material, surface preparation, or device will be amenable to every lunar application.
- Surface chemistry and topographical modifications are effective means to tailor materials with specific interfacial properties.
- Laser ablation patterning is a rapid, scalable, high precision technique for engineering surface topographies and is applicable to a wide variety of materials.
- It is important to develop an efficient screening tool towards identifying the efficacy of materials and surface treatments on lunar dust simulant adhesion.
- Our passive approach coupled with active lunar dust mitigation strategies may be advantageous for some applications and is currently under investigation.

Acknowledgements

Collaborators:

Dr. Sayata Ghose Lillian Chen Brad Atkins Nancy Holloway Vincent Cruz Jane Hogge John Hopkins

Scientific discussion:

Dr. Peter Lillehei, Dr. Jae-Woo Kim

Dr. Joseph Smith, Jr., Dr. Kent Watson

Funding:

- Creativity and Innovation Fund, NASA Langley Research Center
- NASA Postdoctoral Program, Oak Ridge Associated Universities
- Langley Aerospace Research Summer Scholars (LARSS),
 Virginia Space Grant Consortium

